Next: Eigenvalue and Eigenvector References, Previous: Sorting Eigenvalues and Eigenvectors, Up: Eigensystems
The following program computes the eigenvalues and eigenvectors of the 4-th order Hilbert matrix, H(i,j) = 1/(i + j + 1).
#include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
int
main (void)
{
double data[] = { 1.0 , 1/2.0, 1/3.0, 1/4.0,
1/2.0, 1/3.0, 1/4.0, 1/5.0,
1/3.0, 1/4.0, 1/5.0, 1/6.0,
1/4.0, 1/5.0, 1/6.0, 1/7.0 };
gsl_matrix_view m
= gsl_matrix_view_array (data, 4, 4);
gsl_vector *eval = gsl_vector_alloc (4);
gsl_matrix *evec = gsl_matrix_alloc (4, 4);
gsl_eigen_symmv_workspace * w =
gsl_eigen_symmv_alloc (4);
gsl_eigen_symmv (&m.matrix, eval, evec, w);
gsl_eigen_symmv_free (w);
gsl_eigen_symmv_sort (eval, evec,
GSL_EIGEN_SORT_ABS_ASC);
{
int i;
for (i = 0; i < 4; i++)
{
double eval_i
= gsl_vector_get (eval, i);
gsl_vector_view evec_i
= gsl_matrix_column (evec, i);
printf ("eigenvalue = %g\n", eval_i);
printf ("eigenvector = \n");
gsl_vector_fprintf (stdout,
&evec_i.vector, "%g");
}
}
gsl_vector_free (eval);
gsl_matrix_free (evec);
return 0;
}
Here is the beginning of the output from the program,
$ ./a.out
eigenvalue = 9.67023e-05
eigenvector =
-0.0291933
0.328712
-0.791411
0.514553
...
This can be compared with the corresponding output from gnu octave,
octave> [v,d] = eig(hilb(4));
octave> diag(d)
ans =
9.6702e-05
6.7383e-03
1.6914e-01
1.5002e+00
octave> v
v =
0.029193 0.179186 -0.582076 0.792608
-0.328712 -0.741918 0.370502 0.451923
0.791411 0.100228 0.509579 0.322416
-0.514553 0.638283 0.514048 0.252161
Note that the eigenvectors can differ by a change of sign, since the sign of an eigenvector is arbitrary.
The following program illustrates the use of the nonsymmetric eigensolver, by computing the eigenvalues and eigenvectors of the Vandermonde matrix V(x;i,j) = x_i^{n - j} with x = (-1,-2,3,4).
#include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
int
main (void)
{
double data[] = { -1.0, 1.0, -1.0, 1.0,
-8.0, 4.0, -2.0, 1.0,
27.0, 9.0, 3.0, 1.0,
64.0, 16.0, 4.0, 1.0 };
gsl_matrix_view m
= gsl_matrix_view_array (data, 4, 4);
gsl_vector_complex *eval = gsl_vector_complex_alloc (4);
gsl_matrix_complex *evec = gsl_matrix_complex_alloc (4, 4);
gsl_eigen_nonsymmv_workspace * w =
gsl_eigen_nonsymmv_alloc (4);
gsl_eigen_nonsymmv (&m.matrix, eval, evec, w);
gsl_eigen_nonsymmv_free (w);
gsl_eigen_nonsymmv_sort (eval, evec,
GSL_EIGEN_SORT_ABS_DESC);
{
int i, j;
for (i = 0; i < 4; i++)
{
gsl_complex eval_i
= gsl_vector_complex_get (eval, i);
gsl_vector_complex_view evec_i
= gsl_matrix_complex_column (evec, i);
printf ("eigenvalue = %g + %gi\n",
GSL_REAL(eval_i), GSL_IMAG(eval_i));
printf ("eigenvector = \n");
for (j = 0; j < 4; ++j)
{
gsl_complex z = gsl_vector_complex_get(&evec_i.vector, j);
printf("%g + %gi\n", GSL_REAL(z), GSL_IMAG(z));
}
}
}
gsl_vector_complex_free(eval);
gsl_matrix_complex_free(evec);
return 0;
}
Here is the beginning of the output from the program,
$ ./a.out
eigenvalue = -6.41391 + 0i
eigenvector =
-0.0998822 + 0i
-0.111251 + 0i
0.292501 + 0i
0.944505 + 0i
eigenvalue = 5.54555 + 3.08545i
eigenvector =
-0.043487 + -0.0076308i
0.0642377 + -0.142127i
-0.515253 + 0.0405118i
-0.840592 + -0.00148565i
...
This can be compared with the corresponding output from gnu octave,
octave> [v,d] = eig(vander([-1 -2 3 4]));
octave> diag(d)
ans =
-6.4139 + 0.0000i
5.5456 + 3.0854i
5.5456 - 3.0854i
2.3228 + 0.0000i
octave> v
v =
Columns 1 through 3:
-0.09988 + 0.00000i -0.04350 - 0.00755i -0.04350 + 0.00755i
-0.11125 + 0.00000i 0.06399 - 0.14224i 0.06399 + 0.14224i
0.29250 + 0.00000i -0.51518 + 0.04142i -0.51518 - 0.04142i
0.94451 + 0.00000i -0.84059 + 0.00000i -0.84059 - 0.00000i
Column 4:
-0.14493 + 0.00000i
0.35660 + 0.00000i
0.91937 + 0.00000i
0.08118 + 0.00000i
Note that the eigenvectors corresponding to the eigenvalue 5.54555 + 3.08545i are slightly different. This is because they differ by the multiplicative constant 0.9999984 + 0.0017674i which has magnitude 1.