Next: Multimin References and Further Reading, Previous: Multimin Algorithms, Up: Multidimensional Minimization
This example program finds the minimum of the paraboloid function defined earlier. The location of the minimum is offset from the origin in x and y, and the function value at the minimum is non-zero. The main program is given below, it requires the example function given earlier in this chapter.
int
main (void)
{
size_t iter = 0;
int status;
const gsl_multimin_fdfminimizer_type *T;
gsl_multimin_fdfminimizer *s;
/* Position of the minimum (1,2), scale factors
10,20, height 30. */
double par[5] = { 1.0, 2.0, 10.0, 20.0, 30.0 };
gsl_vector *x;
gsl_multimin_function_fdf my_func;
my_func.n = 2;
my_func.f = &my_f;
my_func.df = &my_df;
my_func.fdf = &my_fdf;
my_func.params = ∥
/* Starting point, x = (5,7) */
x = gsl_vector_alloc (2);
gsl_vector_set (x, 0, 5.0);
gsl_vector_set (x, 1, 7.0);
T = gsl_multimin_fdfminimizer_conjugate_fr;
s = gsl_multimin_fdfminimizer_alloc (T, 2);
gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.01, 1e-4);
do
{
iter++;
status = gsl_multimin_fdfminimizer_iterate (s);
if (status)
break;
status = gsl_multimin_test_gradient (s->gradient, 1e-3);
if (status == GSL_SUCCESS)
printf ("Minimum found at:\n");
printf ("%5d %.5f %.5f %10.5f\n", iter,
gsl_vector_get (s->x, 0),
gsl_vector_get (s->x, 1),
s->f);
}
while (status == GSL_CONTINUE && iter < 100);
gsl_multimin_fdfminimizer_free (s);
gsl_vector_free (x);
return 0;
}
The initial step-size is chosen as 0.01, a conservative estimate in this case, and the line minimization parameter is set at 0.0001. The program terminates when the norm of the gradient has been reduced below 0.001. The output of the program is shown below,
x y f
1 4.99629 6.99072 687.84780
2 4.98886 6.97215 683.55456
3 4.97400 6.93501 675.01278
4 4.94429 6.86073 658.10798
5 4.88487 6.71217 625.01340
6 4.76602 6.41506 561.68440
7 4.52833 5.82083 446.46694
8 4.05295 4.63238 261.79422
9 3.10219 2.25548 75.49762
10 2.85185 1.62963 67.03704
11 2.19088 1.76182 45.31640
12 0.86892 2.02622 30.18555
Minimum found at:
13 1.00000 2.00000 30.00000
Note that the algorithm gradually increases the step size as it successfully moves downhill, as can be seen by plotting the successive points.
The conjugate gradient algorithm finds the minimum on its second direction because the function is purely quadratic. Additional iterations would be needed for a more complicated function.
Here is another example using the Nelder-Mead Simplex algorithm to minimize the same example object function, as above.
int
main(void)
{
double par[5] = {1.0, 2.0, 10.0, 20.0, 30.0};
const gsl_multimin_fminimizer_type *T =
gsl_multimin_fminimizer_nmsimplex;
gsl_multimin_fminimizer *s = NULL;
gsl_vector *ss, *x;
gsl_multimin_function minex_func;
size_t iter = 0;
int status;
double size;
/* Starting point */
x = gsl_vector_alloc (2);
gsl_vector_set (x, 0, 5.0);
gsl_vector_set (x, 1, 7.0);
/* Set initial step sizes to 1 */
ss = gsl_vector_alloc (2);
gsl_vector_set_all (ss, 1.0);
/* Initialize method and iterate */
minex_func.n = 2;
minex_func.f = &my_f;
minex_func.params = (void *)∥
s = gsl_multimin_fminimizer_alloc (T, 2);
gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
do
{
iter++;
status = gsl_multimin_fminimizer_iterate(s);
if (status)
break;
size = gsl_multimin_fminimizer_size (s);
status = gsl_multimin_test_size (size, 1e-2);
if (status == GSL_SUCCESS)
{
printf ("converged to minimum at\n");
}
printf ("%5d %10.3e %10.3ef f() = %7.3f size = %.3f\n",
iter,
gsl_vector_get (s->x, 0),
gsl_vector_get (s->x, 1),
s->fval, size);
}
while (status == GSL_CONTINUE && iter < 100);
gsl_vector_free(x);
gsl_vector_free(ss);
gsl_multimin_fminimizer_free (s);
return status;
}
The minimum search stops when the Simplex size drops to 0.01. The output is shown below.
1 6.500e+00 5.000e+00 f() = 512.500 size = 1.082
2 5.250e+00 4.000e+00 f() = 290.625 size = 1.372
3 5.250e+00 4.000e+00 f() = 290.625 size = 1.372
4 5.500e+00 1.000e+00 f() = 252.500 size = 1.372
5 2.625e+00 3.500e+00 f() = 101.406 size = 1.823
6 3.469e+00 1.375e+00 f() = 98.760 size = 1.526
7 1.820e+00 3.156e+00 f() = 63.467 size = 1.105
8 1.820e+00 3.156e+00 f() = 63.467 size = 1.105
9 1.016e+00 2.812e+00 f() = 43.206 size = 1.105
10 2.041e+00 2.008e+00 f() = 40.838 size = 0.645
11 1.236e+00 1.664e+00 f() = 32.816 size = 0.645
12 1.236e+00 1.664e+00 f() = 32.816 size = 0.447
13 5.225e-01 1.980e+00 f() = 32.288 size = 0.447
14 1.103e+00 2.073e+00 f() = 30.214 size = 0.345
15 1.103e+00 2.073e+00 f() = 30.214 size = 0.264
16 1.103e+00 2.073e+00 f() = 30.214 size = 0.160
17 9.864e-01 1.934e+00 f() = 30.090 size = 0.132
18 9.190e-01 1.987e+00 f() = 30.069 size = 0.092
19 1.028e+00 2.017e+00 f() = 30.013 size = 0.056
20 1.028e+00 2.017e+00 f() = 30.013 size = 0.046
21 1.028e+00 2.017e+00 f() = 30.013 size = 0.033
22 9.874e-01 1.985e+00 f() = 30.006 size = 0.028
23 9.846e-01 1.995e+00 f() = 30.003 size = 0.023
24 1.007e+00 2.003e+00 f() = 30.001 size = 0.012
converged to minimum at
25 1.007e+00 2.003e+00 f() = 30.001 size = 0.010
The simplex size first increases, while the simplex moves towards the minimum. After a while the size begins to decrease as the simplex contracts around the minimum.