partial pressure derivations
- partial pressure from number density and temperature - symbol - description - unit - variable name - \(k\) - Boltzmann constant - \(\frac{kg m^2}{K s^2}\) - \(n_{x}\) - number density of air component x (e.g. \(n_{O_{3}}\)) - \(\frac{molec}{m^3}\) - <species>_number_density {:} - \(p_{x}\) - partial pressure of air component x (e.g. \(p_{O_{3}}\)) - \(Pa\) - <species>_partial_pressure {:} - \(T\) - temperature - \(K\) - temperature {:} - The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all. \[p_{x} = n_{x}kT\]
- partial pressure from volume mixing ratio - symbol - description - unit - variable name - \(p\) - pressure - \(Pa\) - pressure {:} - \(p_{x}\) - partial pressure of air component x (e.g. \(p_{O_{3}}\)) - \(Pa\) - <species>_partial_pressure {:} - \(\nu_{x}\) - volume mixing ratio of air component x (e.g. \(\nu_{O_{3}}\)) - \(ppv\) - <species>_volume_mixing_ratio {:} - The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all. \[p_{x} = \nu_{x}p\]
- partial pressure from volume mixing ratio dry air - symbol - description - unit - variable name - \(p_{x}\) - partial pressure of air component x (e.g. \(p_{O_{3}}\)) - \(Pa\) - <species>_partial_pressure {:} - \(\bar{\nu}_{x}\) - volume mixing ratio of air component x (e.g. \(\nu_{O_{3}}\)) - \(ppv\) - <species>_volume_mixing_ratio_dry_air {:} - The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all. \[p_{x} = \bar{\nu}_{x}p_{dry\_air}\]