Actual source code: epsbasic.c
 
   slepc-3.12.2 2020-01-13
   
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain
  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Basic EPS routines
 12: */
 14: #include <slepc/private/epsimpl.h>      /*I "slepceps.h" I*/
 16: PetscFunctionList EPSList = 0;
 17: PetscBool         EPSRegisterAllCalled = PETSC_FALSE;
 18: PetscClassId      EPS_CLASSID = 0;
 19: PetscLogEvent     EPS_SetUp = 0,EPS_Solve = 0;
 21: /*@
 22:    EPSCreate - Creates the default EPS context.
 24:    Collective
 26:    Input Parameter:
 27: .  comm - MPI communicator
 29:    Output Parameter:
 30: .  eps - location to put the EPS context
 32:    Note:
 33:    The default EPS type is EPSKRYLOVSCHUR
 35:    Level: beginner
 37: .seealso: EPSSetUp(), EPSSolve(), EPSDestroy(), EPS
 38: @*/
 39: PetscErrorCode EPSCreate(MPI_Comm comm,EPS *outeps)
 40: {
 42:   EPS            eps;
 46:   *outeps = 0;
 47:   EPSInitializePackage();
 48:   SlepcHeaderCreate(eps,EPS_CLASSID,"EPS","Eigenvalue Problem Solver","EPS",comm,EPSDestroy,EPSView);
 50:   eps->max_it          = 0;
 51:   eps->nev             = 1;
 52:   eps->ncv             = 0;
 53:   eps->mpd             = 0;
 54:   eps->nini            = 0;
 55:   eps->nds             = 0;
 56:   eps->target          = 0.0;
 57:   eps->tol             = PETSC_DEFAULT;
 58:   eps->conv            = EPS_CONV_REL;
 59:   eps->stop            = EPS_STOP_BASIC;
 60:   eps->which           = (EPSWhich)0;
 61:   eps->inta            = 0.0;
 62:   eps->intb            = 0.0;
 63:   eps->problem_type    = (EPSProblemType)0;
 64:   eps->extraction      = EPS_RITZ;
 65:   eps->balance         = EPS_BALANCE_NONE;
 66:   eps->balance_its     = 5;
 67:   eps->balance_cutoff  = 1e-8;
 68:   eps->trueres         = PETSC_FALSE;
 69:   eps->trackall        = PETSC_FALSE;
 70:   eps->purify          = PETSC_TRUE;
 71:   eps->twosided        = PETSC_FALSE;
 73:   eps->converged       = EPSConvergedRelative;
 74:   eps->convergeduser   = NULL;
 75:   eps->convergeddestroy= NULL;
 76:   eps->stopping        = EPSStoppingBasic;
 77:   eps->stoppinguser    = NULL;
 78:   eps->stoppingdestroy = NULL;
 79:   eps->arbitrary       = NULL;
 80:   eps->convergedctx    = NULL;
 81:   eps->stoppingctx     = NULL;
 82:   eps->arbitraryctx    = NULL;
 83:   eps->numbermonitors  = 0;
 85:   eps->st              = NULL;
 86:   eps->ds              = NULL;
 87:   eps->dsts            = NULL;
 88:   eps->V               = NULL;
 89:   eps->W               = NULL;
 90:   eps->rg              = NULL;
 91:   eps->D               = NULL;
 92:   eps->IS              = NULL;
 93:   eps->defl            = NULL;
 94:   eps->eigr            = NULL;
 95:   eps->eigi            = NULL;
 96:   eps->errest          = NULL;
 97:   eps->rr              = NULL;
 98:   eps->ri              = NULL;
 99:   eps->perm            = NULL;
100:   eps->nwork           = 0;
101:   eps->work            = NULL;
102:   eps->data            = NULL;
104:   eps->state           = EPS_STATE_INITIAL;
105:   eps->categ           = EPS_CATEGORY_KRYLOV;
106:   eps->nconv           = 0;
107:   eps->its             = 0;
108:   eps->nloc            = 0;
109:   eps->nrma            = 0.0;
110:   eps->nrmb            = 0.0;
111:   eps->useds           = PETSC_FALSE;
112:   eps->hasts           = PETSC_FALSE;
113:   eps->isgeneralized   = PETSC_FALSE;
114:   eps->ispositive      = PETSC_FALSE;
115:   eps->ishermitian     = PETSC_FALSE;
116:   eps->reason          = EPS_CONVERGED_ITERATING;
118:   PetscNewLog(eps,&eps->sc);
119:   *outeps = eps;
120:   return(0);
121: }
123: /*@C
124:    EPSSetType - Selects the particular solver to be used in the EPS object.
126:    Logically Collective on eps
128:    Input Parameters:
129: +  eps  - the eigensolver context
130: -  type - a known method
132:    Options Database Key:
133: .  -eps_type <method> - Sets the method; use -help for a list
134:     of available methods
136:    Notes:
137:    See "slepc/include/slepceps.h" for available methods. The default
138:    is EPSKRYLOVSCHUR.
140:    Normally, it is best to use the EPSSetFromOptions() command and
141:    then set the EPS type from the options database rather than by using
142:    this routine.  Using the options database provides the user with
143:    maximum flexibility in evaluating the different available methods.
144:    The EPSSetType() routine is provided for those situations where it
145:    is necessary to set the iterative solver independently of the command
146:    line or options database.
148:    Level: intermediate
150: .seealso: STSetType(), EPSType
151: @*/
152: PetscErrorCode EPSSetType(EPS eps,EPSType type)
153: {
154:   PetscErrorCode ierr,(*r)(EPS);
155:   PetscBool      match;
161:   PetscObjectTypeCompare((PetscObject)eps,type,&match);
162:   if (match) return(0);
164:   PetscFunctionListFind(EPSList,type,&r);
165:   if (!r) SETERRQ1(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown EPS type given: %s",type);
167:   if (eps->ops->destroy) { (*eps->ops->destroy)(eps); }
168:   PetscMemzero(eps->ops,sizeof(struct _EPSOps));
170:   eps->state = EPS_STATE_INITIAL;
171:   PetscObjectChangeTypeName((PetscObject)eps,type);
172:   (*r)(eps);
173:   return(0);
174: }
176: /*@C
177:    EPSGetType - Gets the EPS type as a string from the EPS object.
179:    Not Collective
181:    Input Parameter:
182: .  eps - the eigensolver context
184:    Output Parameter:
185: .  name - name of EPS method
187:    Level: intermediate
189: .seealso: EPSSetType()
190: @*/
191: PetscErrorCode EPSGetType(EPS eps,EPSType *type)
192: {
196:   *type = ((PetscObject)eps)->type_name;
197:   return(0);
198: }
200: /*@C
201:    EPSRegister - Adds a method to the eigenproblem solver package.
203:    Not Collective
205:    Input Parameters:
206: +  name - name of a new user-defined solver
207: -  function - routine to create the solver context
209:    Notes:
210:    EPSRegister() may be called multiple times to add several user-defined solvers.
212:    Sample usage:
213: .vb
214:     EPSRegister("my_solver",MySolverCreate);
215: .ve
217:    Then, your solver can be chosen with the procedural interface via
218: $     EPSSetType(eps,"my_solver")
219:    or at runtime via the option
220: $     -eps_type my_solver
222:    Level: advanced
224: .seealso: EPSRegisterAll()
225: @*/
226: PetscErrorCode EPSRegister(const char *name,PetscErrorCode (*function)(EPS))
227: {
231:   EPSInitializePackage();
232:   PetscFunctionListAdd(&EPSList,name,function);
233:   return(0);
234: }
236: /*@
237:    EPSReset - Resets the EPS context to the initial state (prior to setup)
238:    and destroys any allocated Vecs and Mats.
240:    Collective on eps
242:    Input Parameter:
243: .  eps - eigensolver context obtained from EPSCreate()
245:    Note:
246:    This can be used when a problem of different matrix size wants to be solved.
247:    All options that have previously been set are preserved, so in a next use
248:    the solver configuration is the same, but new sizes for matrices and vectors
249:    are allowed.
251:    Level: advanced
253: .seealso: EPSDestroy()
254: @*/
255: PetscErrorCode EPSReset(EPS eps)
256: {
261:   if (!eps) return(0);
262:   if (eps->ops->reset) { (eps->ops->reset)(eps); }
263:   if (eps->st) { STReset(eps->st); }
264:   VecDestroy(&eps->D);
265:   BVDestroy(&eps->V);
266:   BVDestroy(&eps->W);
267:   VecDestroyVecs(eps->nwork,&eps->work);
268:   eps->nwork = 0;
269:   eps->state = EPS_STATE_INITIAL;
270:   return(0);
271: }
273: /*@
274:    EPSDestroy - Destroys the EPS context.
276:    Collective on eps
278:    Input Parameter:
279: .  eps - eigensolver context obtained from EPSCreate()
281:    Level: beginner
283: .seealso: EPSCreate(), EPSSetUp(), EPSSolve()
284: @*/
285: PetscErrorCode EPSDestroy(EPS *eps)
286: {
290:   if (!*eps) return(0);
292:   if (--((PetscObject)(*eps))->refct > 0) { *eps = 0; return(0); }
293:   EPSReset(*eps);
294:   if ((*eps)->ops->destroy) { (*(*eps)->ops->destroy)(*eps); }
295:   if ((*eps)->eigr) {
296:     PetscFree4((*eps)->eigr,(*eps)->eigi,(*eps)->errest,(*eps)->perm);
297:   }
298:   if ((*eps)->rr) {
299:     PetscFree2((*eps)->rr,(*eps)->ri);
300:   }
301:   STDestroy(&(*eps)->st);
302:   RGDestroy(&(*eps)->rg);
303:   DSDestroy(&(*eps)->ds);
304:   DSDestroy(&(*eps)->dsts);
305:   PetscFree((*eps)->sc);
306:   /* just in case the initial vectors have not been used */
307:   SlepcBasisDestroy_Private(&(*eps)->nds,&(*eps)->defl);
308:   SlepcBasisDestroy_Private(&(*eps)->nini,&(*eps)->IS);
309:   if ((*eps)->convergeddestroy) {
310:     (*(*eps)->convergeddestroy)((*eps)->convergedctx);
311:   }
312:   EPSMonitorCancel(*eps);
313:   PetscHeaderDestroy(eps);
314:   return(0);
315: }
317: /*@
318:    EPSSetTarget - Sets the value of the target.
320:    Logically Collective on eps
322:    Input Parameters:
323: +  eps    - eigensolver context
324: -  target - the value of the target
326:    Options Database Key:
327: .  -eps_target <scalar> - the value of the target
329:    Notes:
330:    The target is a scalar value used to determine the portion of the spectrum
331:    of interest. It is used in combination with EPSSetWhichEigenpairs().
333:    In the case of complex scalars, a complex value can be provided in the
334:    command line with [+/-][realnumber][+/-]realnumberi with no spaces, e.g.
335:    -eps_target 1.0+2.0i
337:    Level: intermediate
339: .seealso: EPSGetTarget(), EPSSetWhichEigenpairs()
340: @*/
341: PetscErrorCode EPSSetTarget(EPS eps,PetscScalar target)
342: {
348:   eps->target = target;
349:   if (!eps->st) { EPSGetST(eps,&eps->st); }
350:   STSetDefaultShift(eps->st,target);
351:   return(0);
352: }
354: /*@
355:    EPSGetTarget - Gets the value of the target.
357:    Not Collective
359:    Input Parameter:
360: .  eps - eigensolver context
362:    Output Parameter:
363: .  target - the value of the target
365:    Note:
366:    If the target was not set by the user, then zero is returned.
368:    Level: intermediate
370: .seealso: EPSSetTarget()
371: @*/
372: PetscErrorCode EPSGetTarget(EPS eps,PetscScalar* target)
373: {
377:   *target = eps->target;
378:   return(0);
379: }
381: /*@
382:    EPSSetInterval - Defines the computational interval for spectrum slicing.
384:    Logically Collective on eps
386:    Input Parameters:
387: +  eps  - eigensolver context
388: .  inta - left end of the interval
389: -  intb - right end of the interval
391:    Options Database Key:
392: .  -eps_interval <a,b> - set [a,b] as the interval of interest
394:    Notes:
395:    Spectrum slicing is a technique employed for computing all eigenvalues of
396:    symmetric eigenproblems in a given interval. This function provides the
397:    interval to be considered. It must be used in combination with EPS_ALL, see
398:    EPSSetWhichEigenpairs().
400:    In the command-line option, two values must be provided. For an open interval,
401:    one can give an infinite, e.g., -eps_interval 1.0,inf or -eps_interval -inf,1.0.
402:    An open interval in the programmatic interface can be specified with
403:    PETSC_MAX_REAL and -PETSC_MAX_REAL.
405:    Level: intermediate
407: .seealso: EPSGetInterval(), EPSSetWhichEigenpairs()
408: @*/
409: PetscErrorCode EPSSetInterval(EPS eps,PetscReal inta,PetscReal intb)
410: {
415:   if (inta>intb) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Badly defined interval, must be inta<intb");
416:   if (eps->inta != inta || eps->intb != intb) {
417:     eps->inta = inta;
418:     eps->intb = intb;
419:     eps->state = EPS_STATE_INITIAL;
420:   }
421:   return(0);
422: }
424: /*@
425:    EPSGetInterval - Gets the computational interval for spectrum slicing.
427:    Not Collective
429:    Input Parameter:
430: .  eps - eigensolver context
432:    Output Parameters:
433: +  inta - left end of the interval
434: -  intb - right end of the interval
436:    Level: intermediate
438:    Note:
439:    If the interval was not set by the user, then zeros are returned.
441: .seealso: EPSSetInterval()
442: @*/
443: PetscErrorCode EPSGetInterval(EPS eps,PetscReal* inta,PetscReal* intb)
444: {
447:   if (inta) *inta = eps->inta;
448:   if (intb) *intb = eps->intb;
449:   return(0);
450: }
452: /*@
453:    EPSSetST - Associates a spectral transformation object to the eigensolver.
455:    Collective on eps
457:    Input Parameters:
458: +  eps - eigensolver context obtained from EPSCreate()
459: -  st   - the spectral transformation object
461:    Note:
462:    Use EPSGetST() to retrieve the spectral transformation context (for example,
463:    to free it at the end of the computations).
465:    Level: advanced
467: .seealso: EPSGetST()
468: @*/
469: PetscErrorCode EPSSetST(EPS eps,ST st)
470: {
477:   PetscObjectReference((PetscObject)st);
478:   STDestroy(&eps->st);
479:   eps->st = st;
480:   PetscLogObjectParent((PetscObject)eps,(PetscObject)eps->st);
481:   return(0);
482: }
484: /*@
485:    EPSGetST - Obtain the spectral transformation (ST) object associated
486:    to the eigensolver object.
488:    Not Collective
490:    Input Parameters:
491: .  eps - eigensolver context obtained from EPSCreate()
493:    Output Parameter:
494: .  st - spectral transformation context
496:    Level: intermediate
498: .seealso: EPSSetST()
499: @*/
500: PetscErrorCode EPSGetST(EPS eps,ST *st)
501: {
507:   if (!eps->st) {
508:     STCreate(PetscObjectComm((PetscObject)eps),&eps->st);
509:     PetscObjectIncrementTabLevel((PetscObject)eps->st,(PetscObject)eps,0);
510:     PetscLogObjectParent((PetscObject)eps,(PetscObject)eps->st);
511:     PetscObjectSetOptions((PetscObject)eps->st,((PetscObject)eps)->options);
512:   }
513:   *st = eps->st;
514:   return(0);
515: }
517: /*@
518:    EPSSetBV - Associates a basis vectors object to the eigensolver.
520:    Collective on eps
522:    Input Parameters:
523: +  eps - eigensolver context obtained from EPSCreate()
524: -  V   - the basis vectors object
526:    Level: advanced
528: .seealso: EPSGetBV()
529: @*/
530: PetscErrorCode EPSSetBV(EPS eps,BV V)
531: {
538:   PetscObjectReference((PetscObject)V);
539:   BVDestroy(&eps->V);
540:   eps->V = V;
541:   PetscLogObjectParent((PetscObject)eps,(PetscObject)eps->V);
542:   return(0);
543: }
545: /*@
546:    EPSGetBV - Obtain the basis vectors object associated to the eigensolver object.
548:    Not Collective
550:    Input Parameters:
551: .  eps - eigensolver context obtained from EPSCreate()
553:    Output Parameter:
554: .  V - basis vectors context
556:    Level: advanced
558: .seealso: EPSSetBV()
559: @*/
560: PetscErrorCode EPSGetBV(EPS eps,BV *V)
561: {
567:   if (!eps->V) {
568:     BVCreate(PetscObjectComm((PetscObject)eps),&eps->V);
569:     PetscObjectIncrementTabLevel((PetscObject)eps->V,(PetscObject)eps,0);
570:     PetscLogObjectParent((PetscObject)eps,(PetscObject)eps->V);
571:     PetscObjectSetOptions((PetscObject)eps->V,((PetscObject)eps)->options);
572:   }
573:   *V = eps->V;
574:   return(0);
575: }
577: /*@
578:    EPSSetRG - Associates a region object to the eigensolver.
580:    Collective on eps
582:    Input Parameters:
583: +  eps - eigensolver context obtained from EPSCreate()
584: -  rg  - the region object
586:    Note:
587:    Use EPSGetRG() to retrieve the region context (for example,
588:    to free it at the end of the computations).
590:    Level: advanced
592: .seealso: EPSGetRG()
593: @*/
594: PetscErrorCode EPSSetRG(EPS eps,RG rg)
595: {
602:   PetscObjectReference((PetscObject)rg);
603:   RGDestroy(&eps->rg);
604:   eps->rg = rg;
605:   PetscLogObjectParent((PetscObject)eps,(PetscObject)eps->rg);
606:   return(0);
607: }
609: /*@
610:    EPSGetRG - Obtain the region object associated to the eigensolver.
612:    Not Collective
614:    Input Parameters:
615: .  eps - eigensolver context obtained from EPSCreate()
617:    Output Parameter:
618: .  rg - region context
620:    Level: advanced
622: .seealso: EPSSetRG()
623: @*/
624: PetscErrorCode EPSGetRG(EPS eps,RG *rg)
625: {
631:   if (!eps->rg) {
632:     RGCreate(PetscObjectComm((PetscObject)eps),&eps->rg);
633:     PetscObjectIncrementTabLevel((PetscObject)eps->rg,(PetscObject)eps,0);
634:     PetscLogObjectParent((PetscObject)eps,(PetscObject)eps->rg);
635:     PetscObjectSetOptions((PetscObject)eps->rg,((PetscObject)eps)->options);
636:   }
637:   *rg = eps->rg;
638:   return(0);
639: }
641: /*@
642:    EPSSetDS - Associates a direct solver object to the eigensolver.
644:    Collective on eps
646:    Input Parameters:
647: +  eps - eigensolver context obtained from EPSCreate()
648: -  ds  - the direct solver object
650:    Note:
651:    Use EPSGetDS() to retrieve the direct solver context (for example,
652:    to free it at the end of the computations).
654:    Level: advanced
656: .seealso: EPSGetDS()
657: @*/
658: PetscErrorCode EPSSetDS(EPS eps,DS ds)
659: {
666:   PetscObjectReference((PetscObject)ds);
667:   DSDestroy(&eps->ds);
668:   eps->ds = ds;
669:   PetscLogObjectParent((PetscObject)eps,(PetscObject)eps->ds);
670:   return(0);
671: }
673: /*@
674:    EPSGetDS - Obtain the direct solver object associated to the eigensolver object.
676:    Not Collective
678:    Input Parameters:
679: .  eps - eigensolver context obtained from EPSCreate()
681:    Output Parameter:
682: .  ds - direct solver context
684:    Level: advanced
686: .seealso: EPSSetDS()
687: @*/
688: PetscErrorCode EPSGetDS(EPS eps,DS *ds)
689: {
695:   if (!eps->ds) {
696:     DSCreate(PetscObjectComm((PetscObject)eps),&eps->ds);
697:     PetscObjectIncrementTabLevel((PetscObject)eps->ds,(PetscObject)eps,0);
698:     PetscLogObjectParent((PetscObject)eps,(PetscObject)eps->ds);
699:     PetscObjectSetOptions((PetscObject)eps->ds,((PetscObject)eps)->options);
700:   }
701:   *ds = eps->ds;
702:   return(0);
703: }
705: /*@
706:    EPSIsGeneralized - Ask if the EPS object corresponds to a generalized
707:    eigenvalue problem.
709:    Not collective
711:    Input Parameter:
712: .  eps - the eigenproblem solver context
714:    Output Parameter:
715: .  is - the answer
717:    Level: intermediate
719: .seealso: EPSIsHermitian(), EPSIsPositive()
720: @*/
721: PetscErrorCode EPSIsGeneralized(EPS eps,PetscBool* is)
722: {
726:   *is = eps->isgeneralized;
727:   return(0);
728: }
730: /*@
731:    EPSIsHermitian - Ask if the EPS object corresponds to a Hermitian
732:    eigenvalue problem.
734:    Not collective
736:    Input Parameter:
737: .  eps - the eigenproblem solver context
739:    Output Parameter:
740: .  is - the answer
742:    Level: intermediate
744: .seealso: EPSIsGeneralized(), EPSIsPositive()
745: @*/
746: PetscErrorCode EPSIsHermitian(EPS eps,PetscBool* is)
747: {
751:   *is = eps->ishermitian;
752:   return(0);
753: }
755: /*@
756:    EPSIsPositive - Ask if the EPS object corresponds to an eigenvalue
757:    problem type that requires a positive (semi-) definite matrix B.
759:    Not collective
761:    Input Parameter:
762: .  eps - the eigenproblem solver context
764:    Output Parameter:
765: .  is - the answer
767:    Level: intermediate
769: .seealso: EPSIsGeneralized(), EPSIsHermitian()
770: @*/
771: PetscErrorCode EPSIsPositive(EPS eps,PetscBool* is)
772: {
776:   *is = eps->ispositive;
777:   return(0);
778: }